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ABSTRACT

SUN POSITION ESTIMATION ON
TIME-LAPSE VIDEOS FOR

AUGMENTED REALITY APPLICATIONS

Hasan Balcı

M.S. in Computer Engineering

Advisor: Prof. Dr. Uğur Güdükbay

July, 2015

Realistic illumination of virtual objects on Augmented Reality (AR) environments

is important in terms of achieving visual coherence. This thesis proposes a novel

approach that facilitates the illumination estimation on time-lapse videos and

gives the opportunity to combine AR technology with time-lapse videos in a

visually consistent way. The proposed approach works for both outdoor and

indoor environments where the main light source is the Sun. We first modify an

existing illumination estimation method that aims to obtain sparse radiance map

of the environment in order to estimate the initial Sun position. We then track

the hard ground shadows on the time-lapse video by using an energy-based pixel-

wise method. The proposed method aims to track the shadows by utilizing the

energy values of the pixels that forms them. We tested the method on various

time-lapse videos recorded in outdoor and indoor environments and obtained

successful results.

Keywords: sun position estimation, light source position estimation, illumination

estimation, time-lapse video, shadow tracking, augmented reality.

iii



ÖZET

ARTIRILMIŞ GERÇEKLİK UYGULAMALARI İÇİN
HIZLANDIRILMIŞ ÇEKİM VİDEOLARDA

GÜNEŞ POZİSYONU TAHMİNİ

Hasan Balcı

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Prof. Dr. Uğur Güdükbay

Temmuz, 2015

Artırılmış Gerçeklik (AG) ortamlarındaki sanal nesnelerin gerçekçi bir şekilde

aydınlatılması görsel uyumluluğun sağlanması açısından önemlidir. Bu tez

hızlandırılmş çekim videolarda aydınlatma tahminini kolaylaştıran özgün bir

yaklaşım önermekte ve AG teknolojisiyle hızlandırılmş çekim videoların görsel

olarak uyumlu bir şekilde birleşmesine olanak sağlamaktadır. Önerilen yaklaşım

ana ışık kaynağının Güneş olduğu iç ve dış ortamlarda çalışmaktadır. Bu

yaklaşımda, ilk olarak ortamın aralıklı ışınım haritasını çıkarmaya alışan mev-

cut bir aydınlatma tahmin yöntemi kullanılarak Güneş’in ilk pozisyonunu tah-

min edilir. Daha sonra hızlandırılmış çekim videodaki sert yer gölgeleri ener-

jiye dayalı piksel bazlı bir yöntem kullanılarak takip edilir. Bu yöntem gölgeleri

oluşturan piksellerin enerji değerlerini gölgeleri takip etmek için kullanmayı

amaçlar. Önerilen yöntem iç ve dış ortamlarda çekilmiş çeşitli hızlandırılmş çekim

videolarda denenmiş ve başarılı sonuçlar elde edilmiştir.

Anahtar sözcükler : güneş pozisyon tahmini, ışık kaynaği pozisyon tahmini,

ışıklandırma tahmini, hızlı-ekim video, gölge takibi, artırılmış gerçeklik.
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Chapter 1

Introduction

1.1 Motivation and Scope

Augmented Reality (AR) is a technology that combines real world environment

with virtual entities such as graphics, video, sound or haptic feedback. Current

technology allows people to experience AR technology by using a variety of devices

from head-mounted displays to mobile phones and tablets. With the benefits

it provides, AR has a broad application area, including medicine, education,

commerce, advertising and entertainment [1].

One of the main goals in AR technology is to achieve seamless integration

of the virtual objects into the real environment, especially in a visual context,

so that the user cannot differentiate the virtual objects from the real ones. To

this end, consistent illumination of virtual objects within the real environment is

important to obtain visual coherence. This can be achieved in different ways, such

as estimating the locations of the light sources in the real environment, considering

the shadows cast by/on virtual objects or calculating the global illumination.

Light source estimation in indoor environments is more complex than on the

outdoor environments, since indoor environments may include a lot of different
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kinds of light sources while the main light source on the outdoor environments is

the Sun. However, the light sources in indoor environments are generally static,

whereas the position of the Sun changes over time. Regarding the environments

that are affected mainly by Sun, an AR user may want to observe the virtual

objects on different times of the day where the Sun is in a different position each

time. For example, an architect may want to analyse the appearance of a building

in the course of the day. For this purpose, time-lapse videos can be formed by

capturing frames of the real environment during the desired period of the day

and then they can be combined with AR technology.

We introduce a new approach that provides visual consistency on AR envi-

ronments integrated on time-lapse videos where the main light source is the Sun.

First, we estimate the initial position of the Sun from the first frame of the time-

lapse video by using a modified and enhanced state-of-the-art method. Then,

by keeping track of the shadow length and direction found on the ground, we

estimate the change in the Sun position and direction on each frame and adjusts

the illumination of the virtual objects accordingly.

1.2 Contributions

This thesis has mainly two contributions:

� We modify and enhance an existing method, which tries to estimate the

illumination of a real scene from a single image, especially for the purpose

of estimating the Sun position.

� We propose a new algorithm that can estimate the Sun position fast and

accurately on time-lapse videos. By means of the energy-based pixel-wise

algorithm we developed, we can track the hard ground shadows during the

time-lapse video and estimate the changes in the Sun position easily.
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1.3 Thesis Organization

The rest of this thesis is divided into five chapters. Chapter 2 summarizes the

related studies about illumination estimation for different environments and pur-

poses. Chapter 3 explains the existing illumination estimation method which we

use in this study and how we modified and improved it especially to estimate the

initial Sun position. Chapter 4 provides the details of the energy-based pixel-wise

algorithm we developed for tracking the hard ground shadows in order to estimate

the changes in the Sun position during the time-lapse video. Chapter 5 present

the results of our study by evaluating them both qualitatively and quantitatively.

Chapter 6 concludes by discussing the advantages and drawbacks of the proposed

approach together with possible future extensions.
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Chapter 2

Background and Related Work

There are many studies related to illumination estimation on AR environments,

whereas the number of studies which combines the illumination estimation with

time-lapse videos is limited. The studies on illumination estimation on AR en-

vironments are intended for outdoor environments, indoor environments, mobile

devices, or other specific purposes. We first summarize the research on illumi-

nation estimation on AR environments in different categories defined according

to the intended fields. We then discuss the studies that combine illumination

estimation with time-lapse videos. We finally describe the existing illumination

estimation method that is modified and used as a basis of our approach.

2.1 Illumination Estimation in Outdoor Envi-

ronments

Because the main light source on outdoor environments is the Sun, the studies

related to estimating the illumination on outdoor environments are mainly focus

on finding the Sun position. In some studies, the skylight is considered as the

ambient light of the scene in addition to the Sun. There are also some studies

that assume that the Sun position is known and try to find the change in intensity
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of the sunlight during a period of time.

Panagopoulos et al. [2] suggest a graphical model called as high-order Markov

Random Field (MRF) illumination model. This model uses a 3D model of an

object in the scene and the estimated shadow of the same object in order to

estimate the illumination from a single image.

Lalonde et al. [3] use some cues that may exist in an image such as sky ap-

pearance, vertical surfaces, ground shadows and appearance of pedestrians. By

combining the data extracted from each cue, they try to estimate the Sun position

in a single outdoor image.

In another study that tries to estimate the Sun position from a single image,

Liu et al. [4] first detect a known object on the image and find the surrounding

shadows of that object. They then illuminate the 3D model of the known object

from different angles and try to approximate to the shadows on the original image.

The illumination position that gives the best approximation is accepted as the

estimated sun position.

Lalonde and Matthews [5] try to estimate illumination from outdoor image col-

lections. They first reconstruct a 3D model of a place by using its photographs

taken by different angles. They then estimate the illumination on each photo-

graph by training these photographs with their ground truth high dynamic range

(HDR) lighting conditions and using the reconstructed 3D model.

Assuming that the Sun position is known, Liu and Granier [6] track the changes

in intensity of the sun light in a video sequence. They analyze the extracted

feature points on non-shadowed flat surfaces and according to the changes on

these points, they try to estimate the intensity of the sun light in a time period.

Andersen et al. [7] estimate the dynamic light changes in an outdoor scene.

In an offline preprocessing stage, they acquire diffuse reflectance properties by

using inverse rendering techniques. These reflectance properties are then used

to estimate the illumination properties in an online procedure. This method has

some assumptions, such as known Sun position, simple 3D model with significant
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surfaces, predefined diffused surfaces and HDRI environment map.

In a similar study, Xing et al. [8] try to estimate the dynamically changing

illumination parameters of outdoor video sequences captured by a fixed camera.

Their approach has an initialization stage that includes capturing an image in

early morning and manually labeling upward diffuse surfaces in the image. By

using the information acquired at the initialization stage, the skylight and sunlight

parameters are estimated online.

2.2 Illumination Estimation in Indoor Environ-

ments

Illumination estimation in indoor environments may be challenging because these

environments may have more than one dominant light sources and these light

sources may have different shapes. Most of the studies related to indoor envi-

ronments calculate the radiance on the scene instead of estimating the position

of the light sources. For this purpose, they need the 3D model or geometric in-

formation of the scene and this is achieved mostly by using RGB-D cameras and

depth maps.

Ikeda et al. [9] generate a radiance map on the scene by using incomplete

object shape captured by a depth camera and the estimated shadow of the object.

Similarly, Gruber et al. [10, 11] construct the 3D scene geometry in real-time by

using an RGB-D camera and develop a radiance transfer method that defines the

interactions between scene objects in order to calculate the global illumination on

the scene. Lensing and Broll [12] also use the depth images from RGB-D camera

and combine them with reflective shadow maps in order to estimate the global

illumination on the scene in real-time. In another study, Neverova et al. [13]

first separate the color image into specular and diffuse components. Then, by

rendering these images in different forms with the help of a depth image, they

approximate to the original image using an optimization process.
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Yoo and Lee [14] estimate the light sources from HDR images. They first

segment an HDR image into bright, medium bright and dim images. Then,

they estimate the positions of the light sources from these segmented images by

using the ratio of intensity of radiation. Lopez-Moreno et al. [15, 16] estimate the

directions and intensities of the multiple light sources in an indoor image by using

the silhouette of an object marked by the user and image processing techniques.

2.3 Illumination Estimation for Mobil Devices

The usage of AR applications on mobile devices such as smart phones and tablets

increased recently. However, achieving the photo-realistic illumination estimation

with these applications is limited due to the low computational power of such

devices and dynamically changing user environment.

Rohmer et al. [17] suggest an interactive illumination estimation method on

mobile devices. They try to handle the computational power problem by sharing

the necessary computation between a stationary PC and mobile devices. They

place multiple HDR video cameras in the environment that capture the entire

scene visible to the mobile device in order to estimate the illumination.

In another study related to the mobile devices, Arief et al. [18] use a three-

dimensional (3D) AR marker, which is also a reference object in the scene, and

analyse the relationship between this reference object and its shadow in order to

estimate the position of a single light source in the environment.

2.4 Other Studies for Illumination Estimation

Because the illumination estimation is a challenging problem, especially in AR

environments, there are many studies that try to solve this problem by using

different methods and try to obtain good results. The methods other than the
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ones mentioned in the above sections generally use reference objects, different

camera technologies or they aim to solve specific cases.

In the studies by Debevec [19], Kanbara and Yokoya [20], Wong et al. [21],

and Lee and Jung [22], a mirror ball placed on the scene is used as a light probe.

In these studies, the bright points on the mirror ball are evaluated together with

the position of the ball according the camera and the position of the light sources

on the environment are estimated. In a similar way, Nishino and Kayar [23]

use the human eye as a natural light probe. By using the shape of the cornea

and the camera viewing it, they construct a spherical environment map of the

scene and from this environment map they estimate the illumination of the scene.

Sato et al. [24] and Yoo and Lee [25] both use fisheye lens cameras to obtain the

omnidirectional images of the scene and then they use these images in order to

calculate the direction of the light sources.

Marschner and Greenberg [26] estimate the directional distribution of the inci-

dent light by using a photograph and a 3D model of the pictured object. With the

help of the camera, they first generate a set of basis images by using the 3D model

and a set of basis lights. They then use a linear system inversion method to find

a linear combination of these basis images that matches the original photograph.

The coefficients in this linear combination give the lighting solution.

Sato et al. [27] obtain the illumination distribution of a scene from a radiance

distribution inside shadows cast by an object of known shape onto another object

surface of known shape and reflectance. They estimate the illumination distribu-

tion of the real scene as a set of imaginary point light source distributions over

the scene by using the radiance distribution inside the shadows.

In another study, Knorr and Kurz [28] use human face for illumination estima-

tion. By analyzing some specific points on a human face and learning radiance

transfer functions of these points from a data set consisting of face images with

known illumination, they estimate the lighting conditions in real time.
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2.5 Illumination Estimation for Time-lapse

Videos

There are not so many studies that relate the illumination estimation with time-

lapse videos or track the sun position change during the time-lapse video se-

quences. However, an increase in the number of studies in this area is expected

in the near future because of the growing popularity of time-lapse videos.

Sunkavalli et al. [29] and Zhang et al. [30] both decompose each image in the

time-lapse video into sunlight and skylight basis images by using the information

from whole video sequence. The aim of these studies is to relight the scene easily,

to recover a portion of the scene geometry and to perform some image editing

operations. For this purpose, Sunkavalli et al. analyse the points in shadow and

direct sunlight by using matrix factorization. As a result of this, they obtain

the per-pixel offsets, the basis curves that describe the intensity changes over

time, and the scales of these basis curves that are useful to obtain the spatial

variation of reflectance and geometry. Using this information, they estimate the

basis images illuminated only by the Sun and only by skylight. Zhang et al. also

follow a similar approach. They first detect the shadowed regions by evaluating

the value of each pixel along the video sequence with k-means clustering. With

this information, they obtain the skylight basis images. They then estimate the

sunlight basis images by calculating the basis curves.

Lalonde et al. [31] transfer appearance and illuminant from time-lapse se-

quences to other time-lapse sequences or single images. To this end, they first

build a Webcam database that consists of lots of time-lapse sequences. In order

to transfer appearance to an original image, they evaluate illumination condi-

tions which are the sun position, sky color and weather conditions of the original

image. They find an image from the Webcam database with similar illumina-

tion conditions and transfer an object from that image to the original image.

To achieve illuminant transfer, they propose a model to obtain the high dynamic

range environment maps of the images. They use the acquired environment maps

to illuminate the virtual objects into the images.
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2.6 Illumination Estimation that Works for

Both Indoor and Outdoor Environments

We need to estimate the initial position of the Sun before tracking the shadows

to calculate the change in the position of the Sun during a time-lapse video

sequence. For this purpose, we use the approach of Chen et al. [32], which tries

to estimate the scene illumination from a single image, and modify it according

to our needs. The main advantage of this approach is that it tries to estimate the

illumination in both outdoor and indoor environments. Because we are dealing

with environments where the Sun is the main light source, these may include

both outdoor and indoor environments whose main light source is the Sun like

shops or cafeterias, as shown on Figure 2.1. We estimate the initial position of

the Sun from the first frame of the time-lapse video sequence using the approach

proposed by Chen et al.

Figure 2.1: Sample outdoor environment (left), sample indoor environment with
the Sun as the main light source (right)

The approach proposed by Chen et al. consists of three stages. They try to

construct the scene geometry from a single image by using some existing meth-

ods. They then decompose the image into its intrinsic components, which are

reflectance and shading image. Finally, as a result of an optimization process

that uses information from the geometry and the shading image, they estimate

the environment illumination. Their approach do not estimate the exact positions

of the light sources; instead, they approximate the environment illumination with

the light sources placed symmetrically on a hemisphere covering the scene. In

the sequel, we describe how we modify their approach for time-lapse videos.
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Chapter 3

Estimation of the Initial Position

of the Sun

In order to keep track of the position of the Sun during a time-lapse video, we

first need to estimate the initial position of the Sun. Although there are a lot

of studies that estimate the Sun position accurately, these studies are generally

for the outdoor environments. However, the approach proposed by Chen et al.

estimates the illumination in both outdoor and indoor environments and it is

more suitable to our needs because we are dealing with the position of the Sun

in both outdoor and indoor environments where the main light source is the Sun.

Because Chen et al. mainly aim to estimate the position of the Sun in a single

image, we suggest some improvements for different stages of their approach to

make it applicable to time-lapse videos.

3.1 Geometry Extraction

Chen et al. require the geometric model of the scene represented by the image.

This is important to obtain the normal vectors of surfaces that exist in the scene,
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which are used for illumination calculations. For this purpose, they use the ap-

proach proposed by Saxena et al. [33], which aims to estimate the scene geometry

from a single image. Saxena et al. use some image features, such as color, tex-

ture, edge and location, together with the Markov Random Field (MRF) model.

They get qualitatively correct results in approximately 65% of the test images by

accepting an image as correct when the 70% of the major planes on that image

is correct. We observed that this accuracy is not sufficient to estimate a correct

position of the Sun because the scene geometry extracted using their approach

includes lots of incorrect surface normals. Chen et al. also point out that the

estimated geometry is not quite accurate in the discussion part of their paper.

Instead of extracting the scene geometry from the image, we prefer to obtain

the coarse 3D model of the scene manually. Even though manually modeling

the 3D scene geometry requires a preprocessing stage, it is important to obtain

more accurate results. In a study whose only aim is to estimate the position of

the Sun in a single image, the geometry extraction from the image generally give

acceptable results. However, for estimating the initial position of the Sun for

time-lapse videos, the inaccurate results in the initial stage will affect the later

stages severely.

3.2 Intrinsic Components

On the second stage of the illumination estimation, Chen et al. decompose the

input image into its intrinsic components, which are reflectance and shading im-

ages (Figure 3.1 (b), (c)). An image can be considered as per-pixel product of its

intrinsic reflectance and shading components. The shading image obtained as a

result of the decomposition can be accepted as the irradiance of the surface and

used in the illumination model.
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(a) Input Image (b) Reflectance Image

(c) Shading Image (d) Grayscale Image

Figure 3.1: Intrinsic components of an image. Starting from the input image (a),
we compute the reflectance image (b), and the shading image (c). The grayscale
image (d) is brighter, but it is very similar to (c).
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Although there are many studies that decompose the images into their intrinsic

components, Chen et al. indicate that one of the approaches proposed by Tap-

pen et al. [34], Shen et al. [35], or Jiang et al. [36] can be used for this purpose.

We decided to use the approach proposed by Garces et al. [37]. We observed that

the shading image obtained using their decomposition method is similar to a sim-

ple grayscale image converted from the original RGB image (cf. Figure 3.1 (d)).

We observed that even though the intensity values of the grayscale image are

approximately five to seven units more than the intensity values of the shading

image, this difference have a negligible effect on the results. Using the grayscale

image instead of the shading image does not change the estimated position of the

Sun and causes only a slight difference on light intensity of the Sun. We prefer

using the grayscale image because of its small computational cost.

3.3 Illumination Model

In this stage, our aim is to estimate the approximate position of the Sun from

the first frame of the time-lapse video by using the 3D model of the scene and

the grayscale image that we acquire on the previous stage. For this purpose, we

use the illumination estimation method proposed by Chen et al. tailored to our

needs.

We first place eight spotlights over the 3D model of the scene homogeneously

and symmetrically in such a way that these spotlights will construct a hemisphere

over the scene. Each spotlight is directed to the center of the constructed hemi-

sphere and their lighting ranges are adjusted in such a way that they enclose

the 3D model entirely. These spotlights approximate the real world illumination

caused by the main light sources on the scene. Apart from these spotlights, a

point-light is also placed over the hemisphere in order to obtain the ambient light

coming from the other points on the scene other than the main light sources.

Figure 3.2 depicts a sample model with its light sources.

In the second step, we find the corresponding positions and normal values of

14



Figure 3.2: A 3D model with eight spotlights and one point light.

the pixels on the 3D model. For this purpose, the image is matched with the

3D model of the scene by using the camera tracking algorithm developed by [38]

(cf. Figure 3.3). After this matching step, a ray is cast from the camera position

to each pixel in the image. The first point where the ray cast intersects the 3D

model is the geometric position of the pixel. The normal value of the pixel can

also be found easily.

In the next step, we determine the spotlights that contribute to the illumina-

tion of each pixel. For this purpose, we cast a ray from each of eight spotlights

to the geometric position of a pixel. If the first point where the ray cast from a

spotlight intersects the 3D model is equal to the geometric position of the pixel

to which the ray is cast, then the spotlight contributes to the illumination of

the pixel. Otherwise, the pixel is blocked by some parts of the model and that

spotlight does not contribute to the illumination of the pixel. From this point, if

we subtract the position of a spotlight from the position of a pixel, we can also

obtain the light vector from spotlight to the pixel, which we use for illumination

calculation.

On Lambertian surfaces, the irradiance can be represented by [39]:
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Figure 3.3: Image matched with the 3D model using the tracking algorithm.

S = Ia +
m∑
i=1

Ii Li · N, (3.1)

where S is the pixel values of the grayscale image, Ia is the ambient light, Ii is the

intensity of the ith light source reaching to the pixel positions, Li is the direction

of the ith light source to the pixel positions, m is the number of the light sources

that illuminate the pixels, and N is the normal values of the pixel positions.

Among these variables, we know S, Li and N and we need to find Ia and Ii.

If we apply the Levenberg-Marquardt minimization algorithm [40] between the

grayscale image and the estimated irradiance, we can obtain the intensity values

of the eight spotlight sources and the point-light source required to approximate

to the real world illumination:

arg max
(Ia,I1,I2,...,I8)

ns∑
j=1

(
Sj −

(
Ia +

8∑
i=1

Ii Li . N

))
, (3.2)

where Sj is the value of the jth pixel on the grayscale image and ns is the total

number of pixels.
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Although we obtain the intensity values of the spotlights and point-light we

placed over the 3D model, in the environments where the main light source is the

Sun, the source of illumination is mostly concentrated on one or two spotlights,

as it is expected. For the next stage of our framework, we need to find a single

position for the Sun so that we can easily track its movement. We determine the

center of intensity formed by the spotlights on the hemisphere as the estimated

position of the Sun and place a directional light source to that position instead

of the eight spotlights. The point light source that we place over the hemisphere

is used to account for the ambient light. The overview of the algorithm is given

in Figure 3.4.
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Figure 3.4: The overview of the algorithm that estimates the initial position of
the Sun.
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Chapter 4

Shadow Tracking-based Estimation

of the Position of the Sun

After the estimation of the initial position of the Sun from the first frame of

the time-lapse video, we estimate the position of the Sun in the following frames.

Because the method that we use on the first frame is costly, we cannot apply it on

every frame. To estimate the Sun position fast and accurately for the remaining

frames of the video, we propose a method that uses hard ground shadows on the

Sun direction, which we assume that there exists at least one hard shadow in

the time-lapse video. This method tries to estimate the position of the Sun at

each frame by calculating the changes in the length and direction of these hard

shadows.

First, the hard ground shadows on the first frame are determined by using a

state-of-the-art method [41]. Then, these shadows are eliminated according to a

set of specific criteria (described in detail below) and the energy image of the first

frame. As a result of the elimination, the most appropriate shadow for tracking

is determined. On the following frames of the time-lapse video, this shadow

is tracked by using a pixel-wise method that uses the energy images of these

frames. According to the changes in the length of the shadow and its direction,

the zenith and azimuth angles of the Sun are estimated and the position of the
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Sun is updated accordingly.

4.1 Shadow Selection

In order to estimate the Sun position during a time-lapse video, we use hard

ground shadows. We think that the ground shadows are more informative in

estimation of the zenith and azimuth angles of the Sun whereas the shadows on

the other surfaces may lead to misleading information. The reason we use the

hard shadows is that the hard shadows are easier to track then the soft shadows

and the soft shadows may be unstable during the video.

Although the hard shadows may be good at the estimation of the Sun position,

every hard ground shadow may not work for our purpose. Therefore, we try to

determine a single, appropriate hard ground shadow to track during the time-

lapse video. For this purpose, firstly we determine the hard ground shadows

on the first frame of the time-lapse video by using the method proposed by

Lalonde et al. [41]. This method tries to detect the ground shadows in a single

image and produces really good results. An example output of this method can be

seen in Figure 4.1. In addition to finding the hard ground shadows, we also need to

extract the energy image of the first frame that we use in the elimination process

of the hard ground shadows. An energy image can be generated by applying an

energy function to each pixel in an image. We use the energy function proposed

by Avidan and Shamir [42]:

e(I ) =

∣∣∣∣ ∂∂x
I

∣∣∣∣+

∣∣∣∣ ∂∂y
I

∣∣∣∣ , (4.1)

where I is the input image. We apply this energy function to the first frame of

the time-lapse video and obtain its energy image. Figure 4.1 shows an example

energy image. We use the energy images during the shadow tracking process in

the subsequent frames.
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Figure 4.1: An output image with shadow edges shown in blue (top), and a
sample energy image (bottom).
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We eliminate all but one of the hard ground shadows and decide the most

suitable one to be used in the rest of the frames according to the following five

steps in the given order:

1. If the angle between a shadow and the estimated initial position of the Sun

is greater than 10°, then that shadow is eliminated. These shadows do not

give accurate information about the changes on the position of the Sun.

Because the initial position of the Sun is estimated with at most 10° error,

we do not want to miss a shadow that is really on the direction of the Sun.

2. If at least one end of a shadow is on the boundary of the frame, that

shadow is also eliminated. This is because the whole shadow is not seen in

the frame. In other words, the visible part of the shadow may disappear or

the invisible part may appear in the following frames and this may cause

errors in the results.

3. The shadows whose energy values are lower than the average energy value

are eliminated. Firstly, a shadow energy value is calculated for each shadow

by taking the average of the energy values of the pixels that form the

shadow. The energy values of the pixels are taken from the energy im-

age generated previously. Then the average of the all shadow energy values

is calculated and the shadows whose shadow energy values are lower than

this average value are eliminated. We try to keep the shadows with high

energy value because their tracking is easier than the ones with low energy

value.

4. The average shadow length is calculated from the remaining shadows and if

a shadow is shorter than the average length, that shadow is eliminated. This

is because it is hard to obtain significant information about the changes in

the length and direction of short shadows and long shadows provide more

precise information in this sense.

5. From the remaining shadows, if there exists shadows whose only one corner

intersects with corner of an object in the 3D model, we choose the shadow

with the highest energy from such kind of shadows as the final shadow. If
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there is not such a shadow, we search for the shadows whose both corners

do not intersect any object in the 3D model and select the one with the

highest shadow energy. If again there is not such a shadow, we choose the

shadow with the highest energy as the final shadow. To decide whether or

not the corner of a shadow intersects with the corner of an object on the

model, we use the matched image-model pair described previously.

4.2 Shadow Tracking Algorithm

4.2.1 Shadow Tracking Algorithm

We need to define some variables that will be used in the proposed shadow track-

ing algorithm. We define the pixel that is closest to the estimated position of

the Sun from the shadow pixels as the start pixel (s). Related with this, sx and

sy denote the horizontal and vertical pixel distances of the start pixel s to the

top-left corner of the frame, respectively. Similarly, we define the pixel on the

other corner of the shadow as the final pixel f . fx and fy denote the horizontal

and vertical pixel distances to the top-left corner of the frame, respectively. We

define the shadow length ls as follows:

ls =
√

(fx − sx )2 + (fy − sy)2. (4.2)

Let z and a denote the zenith and azimuth angles of the Sun, respectively. z

and a are initially equal to the zenith and azimuth angles of the Sun estimated

for the first frame and will be updated in subsequent frames. The length of the

object that generates the shadow we are tracking, lv , is used to calculate the

zenith angle of the Sun in subsequent frames and it can be calculated according

to the following equation:

lv = ls tan z. (4.3)
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Let θ denote the counterclockwise angle that the shadow edge makes with the

positive x-axis. It can be calculated according to the following equation:

θ =


360− arccos

(
~t ·~v√

(fx−sx )2+(fy−sy )2

)
, if sy < fy

arccos

(
~t ·~v√

(fx−sx )2+(fy−sy )2

)
, otherwise

(4.4)

where ~t is a vector from (sx , sy) to (sx+1, sy) and ~v is a vector from (sx , sy) to

(fx , fy).

After the preprocessing on the first frame of the time-lapse video, we track

the shadow and estimate the position of the Sun in the following frames. This

process is described in Algorithm 1.

Algorithm 1 Shadow tracking and estimation of zenith and azimuth angles of
the Sun
INPUT: time-lapse video, start pixel s , azimuth angle a, object length lv
OUTPUT: updated position of the Sun

1: while not the end of the video do
2: fetch the frame into a matrix
3: extract the energy image of the frame
4: determine the search direction according to a
5: update s using s of the previous frame
6: check ← true
7: while check do
8: search the next pixel pn , which constructs the shadow according to the

search direction determined using a
9: if energy value of pn < energy threshold or slope of shadow > slope

threshold then
10: check ← false
11: f ← pn

12: end if
13: end while
14: calculate z using f , s and lv
15: calculate a using f , s of the current frame and the a value of the previous

frame
16: update Sun position according to new z and a values
17: end while

First, we fetch the next frame on the video sequence and extract its energy
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image. We check whether the start pixel s that comes from the previous frame

has still the same energy value in the current frame. If its energy value does not

change, we continue to use s as the start pixel. Otherwise, we search for a new

start pixel to construct the shadow on the current frame. We determine the new

position of the start pixel by searching the pixel that is the center of mass of a

5 × 5 pixel area in terms of energy values, where the center pixel is the old s

(cf. Figure 4.2). ei ,j denotes the energy value of the pixel on the ith row and the

jth column inside the pixel area. We can find the center of mass of the pixel area

by using the following equations:

mi = round

(
5∑

i=1

5∑
j=1

j ei ,j

)
, (4.5)

mj = round

(
5∑

j=1

5∑
i=1

i ei ,j

)
, (4.6)

where mi and mj denote the row and column indices of the center of mass within

the 5 × 5 pixel area. We assign the center of mass as the new start pixel by using

the following equation:

s = (sx − 3 + mj , sy − 3 + mi). (4.7)

Before we start the construction of the shadow in the current frame, we need

to determine the search direction for possible shadow pixels. For this purpose,

we use the azimuth angle a calculated for the previous frame and we choose one

of the search directions, as shown in Figure 4.3.

Starting from s , we move in the chosen search direction. While selecting the

next shadow pixel pn , we choose the pixel with the maximum energy from four

possible pixels on the search direction. We continue in this fashion by constructing

the shadow that we track to estimate the zenith and azimuth angles of the Sun

until one of two termination conditions occurs:
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Figure 4.2: Searching the new start pixel. 5 × 5 pixel area with the old start
pixel s in its center is the search area for the new start pixel. The pixel that is
the center of mass in terms of energy values will be the new start pixel.

1. We stop finding the next pixel if the energy value of a pixel is less than the

energy threshold. We define the energy threshold as the half of the energy

of the initial shadow in the first frame. A pixel whose energy is below

the threshold means that we reach the other corner of the shadow. This

condition is illustrated in Figure 4.4. If the energy value of the shadow

is 230, the energy threshold is 115. Assume that the azimuth angle a

from the previous frame is 43°. We search the pixels starting from s on

the appropriate search direction. When we reach the pixel with the energy

value 100, we stop searching and accept the pixel as the final pixel f because

its energy value is less than 115.

2. While constructing the shadow in the current frame, we calculate the slope

of the shadow after the 15th pixel. Then, at every 10 pixels, we calculate the

slope of the last 10 pixels and if the last calculated slope differs at least one

third of the slope of the first 15 pixels, then we stop the shadow construction

process. Because it means that we reach to the other corner of the shadow
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Figure 4.3: Determining the search direction. According to the value of the
azimuth angle a, the appropriate search direction is chosen to form the shadow
in the current frame. A pixel with label s denote the start pixel and the other
four pixels are the candidates for shadow pixels.

and probably a new shadow in another direction starts. An example of this

condition can be seen in Figure 4.5. In this figure, the yellow pixel shows

the 15th pixel of the shadow. As it is seen, because the slope of the last 10

pixels after the green pixel differs from the slope of the first 15 pixels at

least by its one third, we stop searching new pixels and accept the green

pixel as the final pixel f .

We determine the energy and slope thresholds of the termination conditions

as a result of the repeated experiments. In our experiments, we observe that the

second termination condition is encountered more frequently than the first one.

After we find the starting and ending pixels of the shadow in the current frame,

we calculate the new values of the zenith and azimuth angles. We calculate the

zenith angle, z , and the azimuth angle, a, according to the following equations:
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Figure 4.4: The termination condition that depends on the energy threshold.

Figure 4.5: The termination condition that depends on the slope threshold.
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z = arctan(lv/ls), (4.8)

a = aprev + (θcurr − θprev), (4.9)

where aprev denote the azimuth angle for the previous frame, θcurr and θprev denote

the values of the angle θ (cf. Equation 4.4) for the current and the previous frames,

respectively. The position of the Sun can then be updated using the new zenith

and azimuth angles.
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Chapter 5

Evaluation and Results

In studies related to the illumination estimation, the results are generally eval-

uated qualitatively with visual outputs and quantitatively by comparing the re-

sulting angles/directions of the light sources/shadows with ground truth values.

We present some result images from the time-lapse videos with some virtual ob-

jects placed seamlessly in order to show the qualitative success of our study. We

evaluate our study quantitatively by comparing the estimated zenith and azimuth

angles of the Sun with ground truth values.

The time-lapse videos used for testing this study are taken from video-sharing

website Youtube. We used a notebook computer with Intel i7-4700MQ (2.4GHz

Clock) processor, 6Gb RAM, AMD Radeon HD 8750M GPU to make the required

computations and tests in this study. The parts related to the initial estimation

of the position of the Sun are implemented mostly on the Unity game engine [43].

The shadow-tracking-based Sun position estimation is implemented mostly in

MATLAB [44].

It is possible to apply the proposed method either online or in two-passes. In

the online case, we determine the azimuth and zenith angles for each frame and

apply a smoothing procedure by using exponential smoothing and linear regres-

sion to these azimuth and zenith values to find the Sun position and illuminate
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virtual objects accordingly. In the two-pass case, we first find the azimuth and

zenith angles for each frame and approximate these values using linear curves at

the end of the first pass. In the second pass, we use these smoothed azimuth

and zenith values to determine the Sun position and illuminate virtual objects

accordingly. In terms of the quality of the results, the results of the two-pass

procedure are superior to those of the online procedure.

We present the results of the application of the method in two passes on three

time-lapse videos [45, 46, 47]. The visual results on these videos can be seen

by analyzing the illumination of the virtual objects placed into the videos in

Figures 5.1, 5.3 and 5.5. Six still frames of each video show that the virtual

objects are seamlessly integrated into the real scenes. The quantitative results

that compare the estimated zenith and azimuth angles in these videos with the

ground truth values are shown in Figures 5.2, 5.4 and 5.6. The initial differences

between our results and the ground truth values show the error rates that are

caused from the first stage of the algorithm that estimates the initial position of

the Sun. Starting from these error rates, our shadow tracking approach works well

in estimation of the position of the Sun, as it is seen from the parallel patterns

between our results and the ground truth values.

Table 5.1 shows the error rates during the second stage of the proposed ap-

proach by giving the minimum, maximum and mean errors on three videos. The

mean error rates on both zenith and azimuth angles are less than 6°. Because

of the error in the initial Sun position, the length of the object that generates

the shadow cannot be calculated exactly and this causes small increase/decrease

on the error rates on the zenith angle. If the selected hard ground shadow is

not in exactly the same direction with the Sun, this causes small changes on the

error rates on the azimuth angle. According to our observations, the scenes with

more light-shadow content affect the estimation of the Sun position positively.

These scenes also include more alternatives to choose the appropriate shadow

used in tracking process that affects the performance of the tracking stage of the

approach positively.
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Scene 1 Scene 2 Scene 3
Zenith Min Error 4.38° 2.01° 1.04°
Zenith Max Error 6.54° 2.55° 4.17°
Zenith Mean Error 5.46° 2.28° 2.60°
Azimuth Min Error 3.7° 3.73° 3.05°
Azimuth Max Error 5.02° 5.81° 3.16°
Azimuth Mean Error 4.38° 4.77° 3.10°

Table 5.1: Error rates of the zenith and azimuth angles in the three videos

(a) 1st frame (b) 85th frame

(c) 170th frame (d) 255th frame

(e) 340th frame (f) 420th frame

Figure 5.1: Still frames from our first time-lapse video with the position of the
Sun changing. The illumination of the virtual fire hydrant changes synchronously
with the position of the Sun.
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Figure 5.2: Comparison of the zenith angles (a) and azimuth angles (b) of the
first video with the ground truth values.
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(a) 1st frame (b) 125th frame

(c) 250th frame (d) 375th frame

(e) 500th frame (f) 620th frame

Figure 5.3: Still frames from our second time-lapse video with the position of the
Sun changing. The illumination of the virtual flower changes synchronously with
the position of the Sun.
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Figure 5.4: Comparison of the zenith angles (a) and azimuth angles (b) of the
second video with the ground truth values.
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(a) 1st frame (b) 40th frame

(c) 80th frame (d) 120th frame

(e) 160th frame (f) 200th frame

Figure 5.5: Still frames from our third time-lapse video with the position of the
Sun changing. The illumination of the virtual trash bin changes synchronously
with the position of the Sun.
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Figure 5.6: Comparison of the zenith angles (a) and azimuth angles (b) of the
third video with the ground truth values.
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Chapter 6

Conclusions and Future Work

This thesis proposes a new method that facilitates the usage of time-lapse videos

in Augmented Reality applications. To place virtual objects in real videos in

a seamlessly illuminated fashion, we need to estimate the position of the light

sources in real videos. We mainly target the videos of indoor and outdoor en-

vironments where the only light source is the Sun. We estimate the position of

the Sun during a time-lapse video and calculate the illumination of the virtual

objects placed in the real video accordingly. Our approach first estimates the ini-

tial position of the Sun from the first frame of the video by modifying an existing

illumination estimation method. Then by tracking a hard ground shadow in the

scene with an energy-based pixel-wise method for the rest of the video frames,

it estimates the changes in the position of the Sun. The proposed method gives

successful results on time-lapse videos found on the Internet.

The study has some drawbacks such as requiring a coarse 3D model of the

environment prepared manually in a preprocessing stage for the estimation of the

initial position of the Sun. This is required to increase the accuracy of the whole

process. We also assume that there exists at least one appropriate hard ground

shadow that is generated by a rigid body whose shape and position do not change

during the time-lapse video.
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As a future work, different smoothing and filtering techniques can be experi-

mented to improve the results of the application of the proposed approach online.

Soft ground shadows may be evaluated in order to track some other light sources

that may have effect on the environment. Moreover, the shadows other than

the ones on the ground may be used additionally to increase the accuracy. One

other possible future extension is to evaluate the energy changes on the pixels

that form the shadow tracked in the time-lapse video. This evaluation gives the

opportunity to track the changes on the light intensity of the Sun as well as its

position.

39



Bibliography

[1] J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and

M. Ivkovic, “Augmented reality technologies, systems and applications,”

Multimedia Tools and Applications, vol. 51, no. 1, pp. 341–377, 2011.

[2] A. Panagopoulos, C. Wang, D. Samaras, and N. Paragios, “Illumination esti-

mation and cast shadow detection through a higher-order graphical model,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, CVPR ’11, pp. 673–680, June 2011.

[3] J.-F. Lalonde, A. A. Efros, and S. G. Narasimhan, “Estimating the natural

illumination conditions from a single outdoor image,” International Journal

of Computer Vision, vol. 98, no. 2, pp. 123–145, 2012.

[4] Y. Liu, T. Gevers, and X. Li, “Estimation of sunlight direction using 3D

object models,” IEEE Transactions on Image Processing, vol. 24, no. 3,

pp. 932–942, 2014.

[5] J.-F. Lalonde and I. Matthews, “Lighting estimation in outdoor image collec-

tions,” in Proceedings of the International Conference on 3D Vision, vol. 1,

(Tokyo, Japan), pp. 131–138, 2014.

[6] Y. Liu and X. Granier, “Online tracking of outdoor lighting variations for

Augmented Reality with moving cameras,” IEEE Transactions on Visual-

ization and Computer Graphics, vol. 18, no. 4, pp. 573–580, 2012.

[7] M. S. Andersen, T. Jensen, and C. B. Madsen, “Estimation of dynamic light

changes in outdoor scenes without the use of calibration objects,” Proceedings

40



of the International Conference on Pattern Recognition, vol. 4, pp. 91–94,

2006.

[8] G. Xing, Y. Liu, X. Qin, and Q. Peng, “On-line illumination estimation of

outdoor scenes based on area selection for augmented reality,” in Proceedings

of the 12th International Conference on Computer-Aided Design and Com-

puter Graphics, CADGRAPHICS ’11, (Washington, DC, USA), pp. 439–442,

IEEE Computer Society, 2011.

[9] T. Ikeda, Y. Oyamada, M. Sugimoto, and H. Saito, “Illumination estimation

from shadow and incomplete object shape captured by an RGB-D camera,”

in Proceedings of the 21st International Conference on Pattern Recognition,

ICPR ’12, (Tsukuba, Japan), pp. 165–169, November 2012.

[10] L. Gruber, T. Richter-Trummer, and D. Schmalstieg, “Real-time photomet-

ric registration from arbitrary geometry,” in Proceedings of the 11th IEEE

International Symposium on Mixed and Augmented Reality, ISMAR ’12, (At-

lanta, GA, USA), pp. 119–128, November 2012.

[11] L. Gruber, T. Langlotz, P. Sen, T. Hoherer, and D. Schmalstieg, “Efficient

and robust radiance transfer for probeless photorealistic augmented reality,”

in Proceedings of the IEEE Virtual Reality, VR ’14, (Minneapolis, MN, USA),

pp. 15–20, 2014.

[12] P. Lensing and W. Broll, “Instant indirect illumination for dynamic mixed

reality scenes.,” in Proceedings of the 11th IEEE International Symposium

on Mixed and Augmented Reality, ISMAR ’12, pp. 109–118, IEEE Computer

Society, 2012.

[13] N. Neverova, D. Muselet, and A. Trémeau, “Lighting estimation in indoor
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